

SMU Undergraduate Research Programme

Quantum Reinforcement Learning for Combinatorial Optimization | Aug 2024 - Present

RESEARCH AIM

Context:

- Investigate **Quantum Reinforcement Learning approaches** to approximating **Combinatorial Optimization problems**
- ullet QRL has a scalability issue: Time complexity is $O\left(2^n
 ight)$, where n is the number of qubits.

My role:

- Propose a QRL method for moderate Travelling Salesman
 Problem to about 30 50 nodes.
- Improve explainability for QRL circuit structures.

PROGRESS

• Modify the current **state of the art ansatz design** as a form of ablation experiments on the performance of the RL agent as a better understanding of what gates are crucial for good RL performance.

PROJECT ILLUSTRATION

• The classical neural network representing the agent's policy function is replaced by a **Parameterized Quantum Circuit**, which **significantly reduces number of trainable parameters**.

The **ansatz** refers to the underlying circuit design, which is a sequence of gate operations on a system of qubits.