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1 Introduction

In this paper, we present experimental evidence that the Equivariant Quantum Circuit (EQC) [9] to
solve the TSP performs no better than a classical Probabilistic Nearest Neighbour (PNN) Algorithm.
The original EQC work reported near-optimal performance on TSP instances ≤ 20 nodes [9]. Despite
strong interest since its 2023 publication, we find that the EQC’s performance at Depth 1 is statistically
indistinguishable from a PNN baseline in terms of optimality gaps on both TSP instances of uniform
node locations, as well as TSPLIB instances between 5 and 55 nodes. On a set of handcrafted adversarial
TSP instances designed to expose local decision making, the tours produced by the EQC at depths 1 to
4 are largely similar to the tours produced by the PNN baseline. Lastly, we evaluated a classical model
Structure2Vec (S2V) [2], and found this model consistently performs better than the PNN baseline and
the EQC. Scripts, result files and data to reproduce the figures are available in our GitHub repository
archived at Zenodo [11]. To preserve novelty of ongoing work, the GitHub repository will be made public
upon acceptance to QTML 2025. Training code will be released upon full publication.

Neural Combinatorial Optimization (NCO) uses Deep Reinforcement Learning (DRL) to approximate
solutions to Combinatorial Optimization problems [1,12]. The EQC was the first application of Quantum
RL to NCO. The design of the EQC creates a similar encoding for isomorphic graphs [9], which is highly
similar to the design properties of classical NCO algorithms that respect graph structures through message
passing and attention [2, 5, 6].

The EQC offered a significant parameter reduction from its classical counterparts. In [10], we showed
that at depth 1, the γ parameter effectively controls the number of nearest neighbours explored by the
agent. This has motivated us to analyze if the solutions produced by EQC is indeed intelligent. More
precisely, we analyze whether the EQC is in fact any better than a PNN baseline, which constructs a
solution based on exploring an unvisited node with probability relative to its distance from the current
last node.

We conducted three experiments to evaluate our hypothesis, and the results are as follows. Firstly,
on a dataset of TSP instances with uniformly generated node locations (of size 5 to 55), the best EQC
parameter settings found at Depth 1 produces a similar optimality gaps to the PNN Baseline (max
difference ∆max = 0.043, average difference ∆̄ = 0.023). Secondly, on a dataset of TSPLIB instances (of
size 16 to 55), a paired T-test of the individual gaps of the 15 TSPLIB instances show that the difference
in gaps of the EQC and PNN is statistically insignificant (T-test p > 0.05). Lastly, on a dataset of 10
Adversarial TSP instances of sizes 10 to 14, we show that the tours produced by the EQC at Depths
1 to 4 closely follow the PNN Baseline, and the difference in gaps between the EQC and the PNN is
statistically insignificant at depths 1 to 4 (p > 0.05).

2 Methodology

Probabilistic Nearest Neighbour (PNN) Baseline Given the current node t and a set of unexplored
nodes A, an unexplored node a ∈ A is chosen with probability

P(a|t) = exp(−dtak)∑
v∈A exp(−dtvk)

(1)

, where dij denotes the Euclidean Distance between nodes i and j, and we pick k = 150 as performance
saturates beyond k ≥ 120 (see Figure 1). We report the best tour after generating T tours in this fashion.
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Fig. 1: Ablation on the value of k for the PNN baseline
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Fig. 2: Mean Optimality Gap with respect to TSP Size

Note. The plot for PNN shows the best gap obtained
in T = 30 runs.

15 instances (sizes 16 to 55)

EQC Gap µ = 1.128, s = 0.049
PNN Gap µ = 1.105, s = 0.055

p = 0.25 95 % CI [−0.019, 0.065]

(a) Comparison between Depth 1 EQC and PNN
Baseline

38 instances (sizes 51 to 320)

S2V Gap µ = 1.045, σ = 0.032
PNN Gap µ = 1.149, σ = 0.057

p = 3.9×10−14 95 % CI [−0.122, −0.086]

(b) Comparison between PNN Baseline and
Structure2Vec (S2V)

Table 1: Experimental Results for TSPLIB instances

Note. The gap for PNN shows the best gap obtained in T = 500 runs. For EQC, we evaluate using γ∗ found on
the size of the TSPLIB instance. For S2V, we use the reported gaps on TSPLIB in [2]. p refers to a paired T-test
of instance gaps. EQC and PNN tour lengths can be found in our supplementary repository [11].

EQC Training We adopt different strategies for Depth 1 and Depths 2 to 4.

– Depth 1: For each TSP size between 5 and 55, we fix β = 1.1 and grid-search γ ∈ [0, 1.7]. We keep γ
giving the lowest mean optimality gap. This is due to the size-invariant properties at Depth 1 of the
EQC, discussed in our companion submission [10], where we showed that the maximum difference
in optimality gaps achieved by RL and this approach was ∆max = 0.018, and average difference
∆̄ = 0.008. For sizes larger than 17, the quantum simulation becomes memory intensive. As such, we
use the analytical expression for the Q-value provided by the authors in [9].

– Depth 2-4: We train the EQC under the Deep Q Learning (DQN) RL framework [7, 13]. Our train
set consists of 500 TSP instances with uniformly sampled locations, and validating every 10 episodes
on 100 TSP instances. We keep the parameters with minimal gap. We used the discount factor we
used is g = 1 (no discounting).

The TSP instances we generate have coordinates in a unit square (xi ∈ [0, 1]2 for all i). For TSP instances
of size ≤ 14, we take gaps with respect to the Held-Karp optima [4], otherwise we take the best of 30
simulated annealing runs [3]. For TSPLIB instances, we use the optimal solutions found in [8]. Mean
Optimality Gap (Mean Gap) is computed as the average of (Length of tour)/(Optimal Tour length).

3 Results

Uniform Random TSP Instances (EQC Depth 1 vs PNN): Figure 2 shows that the Mean
Gaps of the Depth 1 EQC and PNN Baseline are highly similar (∆̄ = 0.0208, ∆max = 0.0439). The best
γ for Depth 1 EQC can be interpreted as the best tradeoff between making locally optimal decisions
(i.e., selecting the nearest unvisited node) and occasional sub-optimal exploration [10]. As such, this
experiment tests whether the EQC is able to make more globally informed decisions than a simple greedy
heuristic. Given the small differences in mean gap, we conclude a Depth 1 EQC exhibits behavior is
indistinguishable from a PNN Baseline.
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(d) EQC Depth 1
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(e) EQC Depth 2
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(f) EQC Depth 3
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(g) EQC Depth 4

Fig. 3: Adversarial TSP Instance circle14

EQC D1 EQC D2 EQC D3 EQC D4 S2V PNN

Mean Gap 1.081 1.088 1.094 1.086 1.005 1.080
Paired T test
with PNN, p 0.816 0.0699 0.114 0.0953 0.00423 -

95% CI [-0.0107, [−8.21× 10−4, [−4.04× 10−3, [1.49× 10−3, [-0.113, -
0.0133] 0.0173] 0.0313] 0.0154] -0.0302]

Table 2: Results on Adversarial TSP Instances, designed to expose local decision making

Note. For Figure 3 and Table 2, the PNN gap and tour is the best tour produced in T = 500 runs. For EQC (all
depths), we use optimal parameters identified for that TSP size. [11]. This dataset consists of 10 (handcrafted)
adversarial TSP instances (size between 10 and 14). Figure 3 is one adversarial TSP instance. For more visual-
izations and S2V Baseline Details, please refer to our Supplementary Repository [11].

TSPLIB Instances (EQC Depth 1 vs PNN): Table 1a summarizes the comparison of the Depth
1 EQC and PNN on TSPLIB instances. Table 1 shows that PNN attains a lower mean gap than EQC,
but this difference is statistically insignificant (p = 0.24). This further supports our observation that
the behaviour of a depth 1 EQC is similar to a PNN. In contrast, Table 1b shows that the classical
learning-based method Structure2Vec (S2V) significantly outperforms the PNN baseline (p < 0.01). This
performance gap suggests that, despite its circuit-based inductive bias, the EQC still lags behind classical
NCO models in capturing problem structure - leaving substantial room for improvement.

Adversarial TSP Instances (EQC Depths 1 to 4, PNN, S2V): Table 2 shows that the
EQC at all depths produces tours that are statistically indistinguishable from the PNN Baseline (at 5%
significance level), while S2V produces a near-optimal tour. Figure 3 shows the EQC (all depths) and
PNN produces tours with detour-prone behaviour, as a result of its bias toward its nearer (unexplored)
neighbors. S2V, in contrast, demonstrates stronger global decision making in its tour construction. Upon
further investigation, we observe that the best EQC models from (Depth 2 to 4) gives shorter edges
generally larger Q values than longer edges, similar to a Depth 1 EQC that we analyzed in [10]. This
partially explains the tours produced at Depths 2 to 4. These findings raise the question if EQC’s inductive
bias limits its ability to generalize beyond local heuristics, or if optimal EQC parameters is highly sensitive
to instance generation procedure. We leave a more thorough explanation of these possibilities to a future
work.
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